
Thus:
> (parse '(+ (* 1 2) (+ 2 3)))

- ArithC

(plusC

(multC (numC 1) (numC 2))

(plusC (numC 2) (numC 3)))

Congratulations! You have just completed your first representation of a program.
From now on we can focus entirely on programs represented as recursive trees, ignoring
the vagaries of surface syntax and how to get them into the tree form. We’re finally
ready to start studying programming languages!

Exercise

What happens if you forget to quote the argument to the parser? Why?

2.5 Coda
Racket’s syntax, which it inherits from Scheme and Lisp, is controversial. Observe,
however, something deeply valuable that we get from it. While parsing traditional lan-
guages can be very complex, parsing this syntax is virtually trivial. Given a sequence of
tokens corresponding to the input, it is absolutely straightforward to turn parenthesized
sequences into s-expressions; it is equally straightforward (as we see above) to turn s-
expressions into proper syntax trees. I like to call such two-level languages bicameral,
in loose analogy to government legislative houses: the lower-level does rudimentary
well-formedness checking, while the upper-level does deeper validity checking. (We
haven’t done any of the latter yet, but we will [REF].)

The virtues of this syntax are thus manifold. The amount of code it requires is
small, and can easily be embedded in many contexts. By integrating the syntax into
the language, it becomes easy for programs to manipulate representations of programs
(as we will see more of in [REF]). It’s therefore no surprise that even though many
Lisp-based syntaxes have had wildly different semantics, they all share this syntactic
legacy.

Of course, we could just use XML instead. That would be much better. Or JSON.
Because that wouldn’t be anything like an s-expression at all.

3 A First Look at Interpretation
Now that we have a representation of programs, there are many ways in which we might
want to manipulate them. We might want to display a program in an attractive way
(“pretty-print”), convert into code in some other format (“compilation”), ask whether
it obeys certain properties (“verification”), and so on. For now, we’re going to focus
on asking what value it corresponds to (“evaluation”—the reduction of programs to
values).

Let’s write an evaluator, in the form of an interpreter, for our arithmetic language.
We choose arithmetic first for three reasons: (a) you already know how it works, so we
can focus on the mechanics of writing evaluators; (b) it’s contained in every language

13



we will encounter later, so we can build upwards and outwards from it; and (c) it’s at
once both small and big enough to illustrate many points we’d like to get across.

3.1 Representing Arithmetic
Let’s first agree on how we will represent arithmetic expressions. Let’s say we want
to support only two operations—addition and multiplication—in addition to primitive
numbers. We need to represent arithmetic expressions. What are the rules that govern
nesting of arithmetic expressions? We’re actually free to nest any expression inside
another.

Do Now!

Why did we not include division? What impact does it have on the remarks
above?

We’ve ignored division because it forces us into a discussion of what expressions we
might consider legal: clearly the representation of 1/2 ought to be legal; the represen-
tation of 1/0 is much more debatable; and that of 1/(1-1) seems even more contro-
versial. We’d like to sidestep this controversy for now and return to it later [REF].

Thus, we want a representation for numbers and arbitrarily nestable addition and
multiplication. Here’s one we can use:

(define-type ArithC

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)])

3.2 Writing an Interpreter
Now let’s write an interpreter for this arithmetic language. First, we should think about
what its type is. It clearly consumes a ArithC value. What does it produce? Well,
an interpreter evaluates—and what kind of value might arithmetic expressions reduce
to? Numbers, of course. So the interpreter is going to be a function from arithmetic
expressions to numbers.

Exercise

Write your test cases for the interpreter.

Because we have a recursive datatype, it is natural to structure our interpreter as a
recursive function over it. Here’s a first template: Templates are

explained in great
detail in How to
Design Programs.

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) ...]

[multC (l r) ...]))

You’re probably tempted to jump straight to code, which you can:

14



(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) (+ l r)]

[multC (l r) (* l r)]))

Do Now!

Do you spot the errors?

Instead, let’s expand the template out a step:

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) ... (interp l) ... (interp r) ...]

[multC (l r) ... (interp l) ... (interp r) ...]))

and now we can fill in the blanks:

(define (interp [a : ArithC]) : number

(type-case ArithC a

[numC (n) n]

[plusC (l r) (+ (interp l) (interp r))]

[multC (l r) (* (interp l) (interp r))]))

Later on [REF], we’re going to wish we had returned a more complex datatype than
just numbers. But for now, this will do.

Congratulations: you’ve written your first interpreter! I know, it’s very nearly an
anticlimax. But they’ll get harder—much harder—pretty soon, I promise.

3.3 Did You Notice?
I just slipped something by you:

Do Now!

What is the “meaning” of addition and multiplication in this new lan-
guage?

That’s a pretty abstract question, isn’t it. Let’s make it concrete. There are many
kinds of addition in computer science:

• First of all, there’s many different kinds of numbers: fixed-width (e.g., 32-
bit) integers, signed fixed-width (e.g., 31-bits plus a sign-bit) integers, arbitrary
precision integers; in some languages, rationals; various formats of fixed- and
floating-point numbers; in some languages, complex numbers; and so on. After
the numbers have been chosen, addition may support only some combinations of
them.

15



• In addition, some languages permit the addition of datatypes such as matrices.

• Furthermore, many languages support “addition” of strings (we use scare-quotes
because we don’t really mean the mathematical concept of addition, but rather
the operation performed by an operator with the syntax +). In some languages
this always means concatenation; in some others, it can result in numeric results
(or numbers stored in strings).

These are all different meanings for addition. Semantics is the mapping of syntax (e.g.,
+) to meaning (e.g., some or all of the above).

This brings us to our first game of:
Which of these is the same?

• 1 + 2

• 1 + 2

• '1' + '2'

• '1' + '2'

Now return to the question above. What semantics do we have? We’ve adopted
whatever semantics Racket provides, because we map + to Racket’s +. In fact that’s
not even quite true: Racket may, for all we know, also enable + to apply to strings, so
we’ve chosen the restriction of Racket’s semantics to numbers (though in fact Racket’s
+ doesn’t tolerate strings).

If we wanted a different semantics, we’d have to implement it explicitly.
Exercise

What all would you have to change so that the number had signed- 32-bit
arithmetic?

In general, we have to be careful about too readily borrowing from the host lan-
guage. We’ll return to this topic later [REF].

3.4 Growing the Language
We’ve picked a very restricted first language, so there are many ways we can grow it.
Some, such as representing data structures and functions, will clearly force us to add
new features to the interpreter itself (assuming we don’t want to use Gödel numbering).
Others, such as adding more of arithmetic itself, can be done without disturbing the
core language and hence its interpreter. We’ll examine this next (section 4).

4 A First Taste of Desugaring
We’ve begun with a very spartan arithmetic language. Let’s look at how we might
extend it with more arithmetic operations that can nevertheless be expressed in terms
of existing ones. We’ll add just two, because these will suffice to illustrate the point.

16


